Imagine your organization has been tasked to evaluate potential sites for a new warehouse. This evaluation is to be based on access to transportation, the presence of special restrictions such as nearby historical neighborhoods, access to restaurants and other facilities that employees may need, access to public transportation for employees, and nearby land use that may restrict or enhance development. How does your organization evaluate these sites in a quantifiable and defensible way? Of course, your organization needs data, but it also needs tools to analyze the data, measure geographic relationships, and help answer the question. This process is known as spatial analysis.
Many patterns and relationships aren't always obvious from looking at a map. In some cases, there may be too much data to present coherently. The way you display the data on the map can change the patterns you see. Spatial analysis tools allow you to quantify patterns and relationships in the data and display the results as maps, tables, and charts. As of 10.4, these tools are available in Portal for ArcGIS. They allow you to provide portal members with a fast, accessible way to perform many common spatial analysis workflows.
The tools you'll use to perform spatial analysis are actually hosted as a series of tasks in ArcGIS Server. To expose the tools to members of your portal, complete the steps in the Configure the portal to perform analysis section.
Members of your organization will have no direct interaction with ArcGIS Server; they will only use the Portal for ArcGIS website to perform analysis. For example, members will use the analysis tools to perform common analytical functions such as finding hot spots, locating streets and addresses, finding a place, routing, or accessing a geodatabase. By enabling analysis, you empower members of your organization to answer questions and make important decisions using more than visual analysis.
To learn more about each tool, see the Analysis tools section. To learn more about accessing and running the tools, see the Perform analysis section in the Portal for ArcGIS help.
Configure the portal to perform analysis
The spatial analysis tools are hosted as a series of tasks in ArcGIS Server. For members of your organization to use these tasks to perform analysis in Portal for ArcGIS, you'll need to set up a base ArcGIS Enterprise deployment and grant members privileges to perform analysis. The portal's hosting server does the work of processing analysis requests, storing the results in ArcGIS Data Store, and returning results to members in the Portal for ArcGIS website. You cannot use a hosting server configured with an enterprise geodatabase for this purpose.
The following instructions may require changes to the way you've deployed ArcGIS in your organization; review them carefully before proceeding. To configure the portal to perform analysis, follow these steps:
Note:
You can configure analysis for a portal that has been upgraded from an earlier version. Your portal must have a hosting server configured with ArcGIS Data Store. Follow the steps in Upgrade Portal for ArcGIS, and then go to Organization > Settings > Servers and locate the server site. Click the More options button , select Configure server role, use the toggle button to enable the hosting server, and click Save. You can then proceed to step 2 below.
- If you do not already have a base ArcGIS Enterprise deployment configured, set one up. See Tutorial: Set up a base ArcGIS Enterprise deployment for more details.
- Grant members privileges to perform analysis.
Publisher and spatial analysis privileges are needed to perform analysis.
- Optionally, configure additional utility services with your portal. See the analysis tool descriptions below for more information about which tools require which additional utility services. Note that tools that require network utility services require that all of the network utility services be registered with the portal. For more information about the utility services, see Utility services.
Analysis tools
The analysis tools are arranged in categories. These categories are logical groupings and do not affect how members of your organization access or use the tools in any way.
Note:
If the necessary utility services for a tool are not configured, the tool will not be visible in the portal user interface. The tool will also not be visible if a portal member does not have the correct permissions to use that tool.
The categories are as follows:
Summarize data
These tools calculate total counts, lengths, areas, and basic descriptive statistics of features and their attributes within areas or near other features.
Tool | Description |
---|---|
This tool works with a layer of point features and a layer of area features. It first identifies the points that fall within each area. After identifying this point-in-area spatial relationship, statistics about all points in the area are calculated and assigned to the area. The most basic statistic is the count of the number of points within the area, but you can get other statistics as well. For example, you have point features of coffee shop locations and area features of counties and you want to summarize coffee sales by county. Assuming the coffee shops have a TOTAL_SALES attribute, you can get the sum of all TOTAL_SALES within each county, or the minimum or maximum TOTAL_SALES within each county, or the standard deviation of all sales within each county. | |
This tool transfers the attributes of one layer or table to another based on spatial and attribute relationships. Statistics can then be calculated on the joined features. For example, you can do the following:
| |
This tool finds features within a specified distance of features in the analysis layer. Distance can be measured as a straight-line distance or a selected travel mode. Statistics are then calculated for the nearby features. For example, you can do the following:
Note:Travel mode distance calculations require that you configure the portal to use network utility services and grant the Network Analysis privilege to those members who need to run the tool. | |
This tool finds features (and portions of features) within the boundaries of areas in the analysis layer. For example, you can do the following:
| |
This tool finds the central feature, mean center, median center, or ellipse (directional distribution) of point features. For example, you can do the following:
|
Find locations
These tools find features that pass criteria that you specify. They are typically used for site selection when the objective is to find places that satisfy multiple criteria.
Tool | Description |
---|---|
Find Existing Locations | This tool selects existing features in your study area that meet a series of criteria you specify. These criteria can be based on attribute queries (for example, parcels that are vacant) and spatial queries (for example, parcels within 1 mile of a river). |
Derive New Locations | This tool derives new features in your study area that meet a series of criteria you specify. These criteria can be based on attribute queries (for example, parcels that are vacant) and spatial queries (for example, parcels that are within flood zones). |
Find Similar Locations | Based on criteria you specify, the Find Similar Locations tool measures the similarity of locations in your candidate search layer to one or more reference locations. |
Create Viewshed | This tool creates areas were an observer can see objects on the ground. The input analysis points can represent either observers (such as people on the ground or lookouts in a fire tower) or observed objects (such as wind turbines, water towers, vehicles, or other people). The result areas are those areas where the observers can see the observed objects and vice versa: the observed objects can see the observers. The output is typically used in site suitability and selection analysis. Note:This tool requires you to configure elevation and hydrological service items for the portal, and grant the Elevation Analysis privilege to any members who need to run the tool. Note:Your portal administrator must configure elevation and hydrological service items for the portal, and grant you the Elevation Analysis privilege to allow you to run this tool. |
Create Watersheds | This tool identifies catchment areas based on locations that you specify. Note:This tool requires you to configure elevation and hydrological service items for the portal, and grant the Elevation Analysis privilege to any members who need to run the tool. Note:Your portal administrator must configure elevation and hydrological service items for the portal, and grant you the Elevation Analysis privilege to allow you to run this tool. |
Trace Downstream | This tool determines the trace, or flow path, in a downstream direction from the points in your analysis layer. Note:This tool requires you to configure elevation and hydrological service items for the portal, and grant the Elevation Analysis privilege to any members who need to run the tool. Note:Your portal administrator must configure elevation and hydrological service items for the portal, and grant you the Elevation Analysis privilege to allow you to run this tool. |
Data enrichment
These tools help you explore the character of areas. Detailed demographic data and statistics are returned for your chosen areas. Comparative information can also be reported for expanded areas such as counties and states.
Tool | Description |
---|---|
This tool enriches your point or area data by getting facts about the people, places, and businesses that surround your data locations. Using this tool, you can answer questions about locations that you cannot answer with maps alone; for example, What kind of people live here? What do people like to do in this area? What are their habits and lifestyles? What kind of businesses are in this area? The result is a new layer containing all demographic and geographic information from given data collections. This information is added as fields in the table. Note:This tool requires a GeoEnrichment utility service, and any members who need to run the tool require the GeoEnrichment privilege. Additionally, travel mode distance calculations require that you configure the portal to use network utility services and grant the Network Analysis privilege to those members who need to run the tool. |
Analyze patterns
These tools help you identify, quantify, and visualize spatial patterns in your data by identifying areas of statistically significant clusters.
Tool | Description |
---|---|
This tool creates a density map from point or line features by spreading known quantities of a phenomenon (represented as attributes of the points or lines) across the map. The result is a layer of areas classified from least dense to most dense. For example, you can do the following:
| |
This tool identifies statistically significant clustering in the spatial pattern of your data. For example, you can do the following:
| |
This tool identifies statistically significant outliers in the spatial pattern of your data. For example, you can do the following:
| |
This tool finds clusters of point features in surrounding noise based on their spatial distribution. For example, you can do the following:
| |
This tool allows you to predict values at new locations based on measurements from a collection of points. The tool takes point data with values at each point and returns areas classified by predicted values. For example, you can do the following:
|
Use proximity
These tools help you answer one of the most common questions posed in spatial analysis: What is near what?
Tool | Description |
---|---|
This tool creates buffers. A buffer is an area that covers a given distance from a point, line, or area feature. Buffers are typically used to create areas that can be further analyzed using a tool such as Overlay Layers. For example, if the question is What buildings are within 1 mile of the school?, you can find the answer by creating a 1-mile buffer around the school and overlaying the buffer with the layer containing building footprints. The result is a layer of those buildings within 1 mile of the school. | |
This tool creates areas that can be reached within a specified drive time or drive distance. It measures from one or many points (up to 1,000), along roads, to create a layer that can help you answer questions such as the following:
You may be able to answer your questions solely through visualizing the output areas. Alternatively, you can perform further spatial analysis using the output areas. For example, you can run the Aggregate Points tool using drive-time areas with demographic data to determine the potential store location that will likely provide the best customer base for your type of business. Note:You must configure network utility services on the portal and grant members the Network Analysis privilege to allow them to run this tool. | |
This tool finds the nearest features and, optionally, reports and ranks the distance to the nearby features. To find what's nearby, the tool can either measure straight-line distance or a selected travel mode. There are options to limit the number of nearest features to find or the search range in which to find them. The results from this tool can help you answer questions such as the following:
Find Nearest returns a layer containing the nearest features and, optionally, a line layer that links the start locations to their nearest locations. The optional line layer contains information about the start and nearest locations and the distances between. Note:To allow members to find nearby features using most of the available travel modes, your inputs must be point features and you must configure network utility services for the portal and grant members the Network Analysis privilege. You can, however, measure using the Line Distance option without this privilege. | |
This tool efficiently divides tasks among a mobile workforce. You provide the tool with a set of stops and the number of vehicles available to visit the stops. The tool assigns the stops to vehicles and returns routes showing how each vehicle can reach their assigned stops in the least amount of time. With Plan Routes, mobile workforces can reach more job sites in less time, which increases productivity and improves customer service. For example, they can do the following:
The output from Plan Routes includes a layer of stops coded by the routes to which they are assigned, a layer of routes showing the shortest paths to visit assigned stops, and, depending on whether any stops could not be reached, a layer of unassigned stops. Note:You must configure network utility services on the portal and grant members the Network Analysis privilege to allow them to run this tool. | |
This tool measures the travel time or distance between pairs of points. The tool can identify straight-line distances, road distances, or travel times. You provide starting and ending points, and the tool returns a layer containing route lines, including measurements, between the paired origins and destinations. If many origins go to one destination, a table summarizing multiple trips to the destination is included in the output. Note:You must configure network utility services on the portal and grant members the Network Analysis privilege to allow them to run this tool. |
Manage data
These tools are used for both the day-to-day management of geographic data and for combining data prior to analysis.
Tool | Description |
---|---|
This tool extracts data that you select for a specified area of interest. Layers that you select are added to a .zip file or layer package. | |
This tool merges areas that overlap or share a common boundary to form a single area. You can control which boundaries are merged by specifying a field. For example, if you have a layer of counties and each county has a State_Name attribute, you can dissolve boundaries using the State_Name attribute. Adjacent counties are merged if they have the same State_Name value. The result is a layer of state boundaries. | |
This tool creates bins of a specified shape and size for the study area. Bins can be square, hexagonal, transverse hexagonal, triangular, or diamond shaped. | |
This tool copies features from two layers into a new single layer. The layers to be merged must all contain the same feature types (points, lines, or areas). You can control how the fields from the input layers are joined and copied. For example, you can do the following:
| |
This tool combines two or more layers into a single layer. You can think of overlay as peering through a stack of maps and creating a single map containing all the information found in the stack. Overlay is much more than a merging of line work; all the attributes of the features taking part in the overlay are carried through to the final product. Overlay is used to answer one of the most basic questions of geography: What is on top of what? For example, you can answer the following questions:
|