Skip To Content

List Deep Learning Models

Description

List Deep Learning Models

The ListDeepLearningModels operation is used to list all the installed deep learning models on the raster analysis image server.

Request parameters

ParameterDetails
f

The response format. The default response format is html.

Values: html | json

Response

When you submit a request, the task assigns a unique job ID for the transaction.

Syntax:

{
"jobId": "<unique job identifier>",
"jobStatus": "<job status>"
}

After the initial request is submitted, you can use jobId to periodically review the status of the job and messages as described in Checking job status. Once the job has successfully completed, use jobId to retrieve the results. To track the status, you can make a request of the following form:

https://<raster analysis tools url>/ListDeepLearningModels/jobs/<jobId>

When the status of the job request is esriJobSucceeded, you can access the results of the analysis by making a request of the following form:

https://<raster analysis tools url>/ListDeepLearningModels/jobs/<jobId>/results/deepLearningModels

Example usage

Below is a sample request URL for ListDeepLearningModels.

https://services.myserver.com/arcgis/rest/services/System/RasterAnalysisTools/GPServer/ListDeepLearningModels/submitJob

JSON Response example

The response returns the deepLearningModels output parameter, which has properties for parameter name, data type, and value. The content of the value is a list of the installed models.


{
  "paramName": "deepLearningModels",
  "dataType": "GPString",
  "value": [
    {
      "id": "699f1d1ef35a47638b0bf09fdb585222",
      "owner": "admin",
      "created": 1547090428973,
      "modified": 1547090428973,
      "guid": null,
      "name": "LandClassification.dlpk",
      "title": "LandClassification",
      "type": "Deep Learning Package",
      "typeKeywords": [
        "Deep Learning",
        "Raster"
      ],
      "description": null,
      "tags": ["tensorflow"],
      "snippet": null,
      "thumbnail": null,
      "documentation": null,
      "extent": [],
      "categories": [],
      "spatialReference": null,
      "accessInformation": null,
      "licenseInfo": null,
      "culture": "",
      "properties": null,
      "url": null,
      "proxyFilter": null,
      "access": "private",
      "size": 153524904,
      "appCategories": [],
      "industries": [],
      "languages": [],
      "largeThumbnail": null,
      "banner": null,
      "screenshots": [],
      "listed": false,
      "ownerFolder": "decc808cc97c482c98f2574533177a70",
      "protected": false,
      "commentsEnabled": false,
      "numComments": 0,
      "numRatings": 0,
      "avgRating": 0,
      "numViews": 0,
      "itemControl": "admin",
      "scoreCompleteness": 16,
      "groupDesignations": null
    },
    {
      "id": "f38c4e10b2dd4740b7f1924d2e37b16e",
      "owner": "admin",
      "created": 1547081306941,
      "modified": 1547081306941,
      "guid": null,
      "name": "Coconut_Tree_Detection.dlpk",
      "title": "Coconut_Tree_Detection",
      "type": "Deep Learning Package",
      "typeKeywords": [
        "Deep Learning",
        "Raster"
      ],
      "description": null,
      "tags": ["tensorflow"],
      "snippet": null,
      "thumbnail": null,
      "documentation": null,
      "extent": [],
      "categories": [],
      "spatialReference": null,
      "accessInformation": null,
      "licenseInfo": null,
      "culture": "",
      "properties": null,
      "url": null,
      "proxyFilter": null,
      "access": "private",
      "size": 47931856,
      "appCategories": [],
      "industries": [],
      "languages": [],
      "largeThumbnail": null,
      "banner": null,
      "screenshots": [],
      "listed": false,
      "ownerFolder": "decc808cc97c482c98f2574533177a70",
      "protected": false,
      "commentsEnabled": false,
      "numComments": 0,
      "numRatings": 0,
      "avgRating": 0,
      "numViews": 0,
      "itemControl": "admin",
      "scoreCompleteness": 16,
      "groupDesignations": null
    }
  ]
}

Related topics